Vulnerabilities (CVE)

Filtered by NVD-CWE-noinfo
Total 33822 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2013-5591 1 Mozilla 4 Firefox, Seamonkey, Thunderbird and 1 more 2025-11-25 10.0 HIGH N/A
Unspecified vulnerability in the browser engine in Mozilla Firefox before 25.0, Firefox ESR 24.x before 24.1, Thunderbird before 24.1, and SeaMonkey before 2.22 allows remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
CVE-2018-12392 4 Canonical, Debian, Mozilla and 1 more 10 Ubuntu Linux, Debian Linux, Firefox and 7 more 2025-11-25 7.5 HIGH 9.8 CRITICAL
When manipulating user events in nested loops while opening a document through script, it is possible to trigger a potentially exploitable crash due to poor event handling. This vulnerability affects Firefox < 63, Firefox ESR < 60.3, and Thunderbird < 60.3.
CVE-2018-5168 4 Canonical, Debian, Mozilla and 1 more 11 Ubuntu Linux, Debian Linux, Firefox and 8 more 2025-11-25 5.0 MEDIUM 5.3 MEDIUM
Sites can bypass security checks on permissions to install lightweight themes by manipulating the "baseURI" property of the theme element. This could allow a malicious site to install a theme without user interaction which could contain offensive or embarrassing images. This vulnerability affects Thunderbird < 52.8, Thunderbird ESR < 52.8, Firefox < 60, and Firefox ESR < 52.8.
CVE-2025-39739 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu-qcom: Add SM6115 MDSS compatible Add the SM6115 MDSS compatible to clients compatible list, as it also needs that workaround. Without this workaround, for example, QRB4210 RB2 which is based on SM4250/SM6115 generates a lot of smmu unhandled context faults during boot: arm_smmu_context_fault: 116854 callbacks suppressed arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402, iova=0x5c0ec600, fsynr=0x320021, cbfrsynra=0x420, cb=5 arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420 arm-smmu c600000.iommu: FSYNR0 = 00320021 [S1CBNDX=50 PNU PLVL=1] arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402, iova=0x5c0d7800, fsynr=0x320021, cbfrsynra=0x420, cb=5 arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420 and also failed initialisation of lontium lt9611uxc, gpu and dpu is observed: (binding MDSS components triggered by lt9611uxc have failed) ------------[ cut here ]------------ !aspace WARNING: CPU: 6 PID: 324 at drivers/gpu/drm/msm/msm_gem_vma.c:130 msm_gem_vma_init+0x150/0x18c [msm] Modules linked in: ... (long list of modules) CPU: 6 UID: 0 PID: 324 Comm: (udev-worker) Not tainted 6.15.0-03037-gaacc73ceeb8b #4 PREEMPT Hardware name: Qualcomm Technologies, Inc. QRB4210 RB2 (DT) pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : msm_gem_vma_init+0x150/0x18c [msm] lr : msm_gem_vma_init+0x150/0x18c [msm] sp : ffff80008144b280 ... Call trace: msm_gem_vma_init+0x150/0x18c [msm] (P) get_vma_locked+0xc0/0x194 [msm] msm_gem_get_and_pin_iova_range+0x4c/0xdc [msm] msm_gem_kernel_new+0x48/0x160 [msm] msm_gpu_init+0x34c/0x53c [msm] adreno_gpu_init+0x1b0/0x2d8 [msm] a6xx_gpu_init+0x1e8/0x9e0 [msm] adreno_bind+0x2b8/0x348 [msm] component_bind_all+0x100/0x230 msm_drm_bind+0x13c/0x3d0 [msm] try_to_bring_up_aggregate_device+0x164/0x1d0 __component_add+0xa4/0x174 component_add+0x14/0x20 dsi_dev_attach+0x20/0x34 [msm] dsi_host_attach+0x58/0x98 [msm] devm_mipi_dsi_attach+0x34/0x90 lt9611uxc_attach_dsi.isra.0+0x94/0x124 [lontium_lt9611uxc] lt9611uxc_probe+0x540/0x5fc [lontium_lt9611uxc] i2c_device_probe+0x148/0x2a8 really_probe+0xbc/0x2c0 __driver_probe_device+0x78/0x120 driver_probe_device+0x3c/0x154 __driver_attach+0x90/0x1a0 bus_for_each_dev+0x68/0xb8 driver_attach+0x24/0x30 bus_add_driver+0xe4/0x208 driver_register+0x68/0x124 i2c_register_driver+0x48/0xcc lt9611uxc_driver_init+0x20/0x1000 [lontium_lt9611uxc] do_one_initcall+0x60/0x1d4 do_init_module+0x54/0x1fc load_module+0x1748/0x1c8c init_module_from_file+0x74/0xa0 __arm64_sys_finit_module+0x130/0x2f8 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x2c/0x80 el0t_64_sync_handler+0x10c/0x138 el0t_64_sync+0x198/0x19c ---[ end trace 0000000000000000 ]--- msm_dpu 5e01000.display-controller: [drm:msm_gpu_init [msm]] *ERROR* could not allocate memptrs: -22 msm_dpu 5e01000.display-controller: failed to load adreno gpu platform a400000.remoteproc:glink-edge:apr:service@7:dais: Adding to iommu group 19 msm_dpu 5e01000.display-controller: failed to bind 5900000.gpu (ops a3xx_ops [msm]): -22 msm_dpu 5e01000.display-controller: adev bind failed: -22 lt9611uxc 0-002b: failed to attach dsi to host lt9611uxc 0-002b: probe with driver lt9611uxc failed with error -22
CVE-2025-39722 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: crypto: caam - Prevent crash on suspend with iMX8QM / iMX8ULP Since the CAAM on these SoCs is managed by another ARM core, called the SECO (Security Controller) on iMX8QM and Secure Enclave on iMX8ULP, which also reserves access to register page 0 suspend operations cannot touch this page. This is similar to when running OPTEE, where OPTEE will reserve page 0. Track this situation using a new state variable no_page0, reflecting if page 0 is reserved elsewhere, either by other management cores in SoC or by OPTEE. Replace the optee_en check in suspend/resume with the new check. optee_en cannot go away as it's needed elsewhere to gate OPTEE specific situations. Fixes the following splat at suspend: Internal error: synchronous external abort: 0000000096000010 [#1] SMP Hardware name: Freescale i.MX8QXP ACU6C (DT) pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : readl+0x0/0x18 lr : rd_reg32+0x18/0x3c sp : ffffffc08192ba20 x29: ffffffc08192ba20 x28: ffffff8025190000 x27: 0000000000000000 x26: ffffffc0808ae808 x25: ffffffc080922338 x24: ffffff8020e89090 x23: 0000000000000000 x22: ffffffc080922000 x21: ffffff8020e89010 x20: ffffffc080387ef8 x19: ffffff8020e89010 x18: 000000005d8000d5 x17: 0000000030f35963 x16: 000000008f785f3f x15: 000000003b8ef57c x14: 00000000c418aef8 x13: 00000000f5fea526 x12: 0000000000000001 x11: 0000000000000002 x10: 0000000000000001 x9 : 0000000000000000 x8 : ffffff8025190870 x7 : ffffff8021726880 x6 : 0000000000000002 x5 : ffffff80217268f0 x4 : ffffff8021726880 x3 : ffffffc081200000 x2 : 0000000000000001 x1 : ffffff8020e89010 x0 : ffffffc081200004 Call trace: readl+0x0/0x18 caam_ctrl_suspend+0x30/0xdc dpm_run_callback.constprop.0+0x24/0x5c device_suspend+0x170/0x2e8 dpm_suspend+0xa0/0x104 dpm_suspend_start+0x48/0x50 suspend_devices_and_enter+0x7c/0x45c pm_suspend+0x148/0x160 state_store+0xb4/0xf8 kobj_attr_store+0x14/0x24 sysfs_kf_write+0x38/0x48 kernfs_fop_write_iter+0xb4/0x178 vfs_write+0x118/0x178 ksys_write+0x6c/0xd0 __arm64_sys_write+0x14/0x1c invoke_syscall.constprop.0+0x64/0xb0 do_el0_svc+0x90/0xb0 el0_svc+0x18/0x44 el0t_64_sync_handler+0x88/0x124 el0t_64_sync+0x150/0x154 Code: 88dffc21 88dffc21 5ac00800 d65f03c0 (b9400000)
CVE-2025-55179 1 Whatsapp 2 Whatsapp, Whatsapp Business 2025-11-25 N/A 5.4 MEDIUM
Incomplete validation of rich response messages in WhatsApp for iOS prior to v2.25.23.73, WhatsApp Business for iOS v2.25.23.82, and WhatsApp for Mac v2.25.23.83 could have allowed a user to trigger processing of media content from an arbitrary URL on another user’s device. We have not seen evidence of exploitation in the wild.
CVE-2024-26836 1 Linux 1 Linux Kernel 2025-11-25 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix password opcode ordering for workstations The Lenovo workstations require the password opcode to be run before the attribute value is changed (if Admin password is enabled). Tested on some Thinkpads to confirm they are OK with this order too.
CVE-2022-50261 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/gpu/drm/sti/sti_hda.c:637:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hda_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_dvo.c:376:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_dvo_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_hdmi.c:1035:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hdmi_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ->mode_valid() in 'struct drm_connector_helper_funcs' expects a return type of 'enum drm_mode_status', not 'int'. Adjust the return type of sti_{dvo,hda,hdmi}_connector_mode_valid() to match the prototype's to resolve the warning and CFI failure.
CVE-2022-50260 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Make .remove and .shutdown HW shutdown consistent Drivers' .remove and .shutdown callbacks are executed on different code paths. The former is called when a device is removed from the bus, while the latter is called at system shutdown time to quiesce the device. This means that some overlap exists between the two, because both have to take care of properly shutting down the hardware. But currently the logic used in these two callbacks isn't consistent in msm drivers, which could lead to kernel panic. For example, on .remove the component is deleted and its .unbind callback leads to the hardware being shutdown but only if the DRM device has been marked as registered. That check doesn't exist in the .shutdown logic and this can lead to the driver calling drm_atomic_helper_shutdown() for a DRM device that hasn't been properly initialized. A situation like this can happen if drivers for expected sub-devices fail to probe, since the .bind callback will never be executed. If that is the case, drm_atomic_helper_shutdown() will attempt to take mutexes that are only initialized if drm_mode_config_init() is called during a device bind. This bug was attempted to be fixed in commit 623f279c7781 ("drm/msm: fix shutdown hook in case GPU components failed to bind"), but unfortunately it still happens in some cases as the one mentioned above, i.e: systemd-shutdown[1]: Powering off. kvm: exiting hardware virtualization platform wifi-firmware.0: Removing from iommu group 12 platform video-firmware.0: Removing from iommu group 10 ------------[ cut here ]------------ WARNING: CPU: 6 PID: 1 at drivers/gpu/drm/drm_modeset_lock.c:317 drm_modeset_lock_all_ctx+0x3c4/0x3d0 ... Hardware name: Google CoachZ (rev3+) (DT) pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : drm_modeset_lock_all_ctx+0x3c4/0x3d0 lr : drm_modeset_lock_all_ctx+0x48/0x3d0 sp : ffff80000805bb80 x29: ffff80000805bb80 x28: ffff327c00128000 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000001 x24: ffffc95d820ec030 x23: ffff327c00bbd090 x22: ffffc95d8215eca0 x21: ffff327c039c5800 x20: ffff327c039c5988 x19: ffff80000805bbe8 x18: 0000000000000034 x17: 000000040044ffff x16: ffffc95d80cac920 x15: 0000000000000000 x14: 0000000000000315 x13: 0000000000000315 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : ffff80000805bc28 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff327c00128000 x1 : 0000000000000000 x0 : ffff327c039c59b0 Call trace: drm_modeset_lock_all_ctx+0x3c4/0x3d0 drm_atomic_helper_shutdown+0x70/0x134 msm_drv_shutdown+0x30/0x40 platform_shutdown+0x28/0x40 device_shutdown+0x148/0x350 kernel_power_off+0x38/0x80 __do_sys_reboot+0x288/0x2c0 __arm64_sys_reboot+0x28/0x34 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0x44/0xec do_el0_svc+0x2c/0xc0 el0_svc+0x2c/0x84 el0t_64_sync_handler+0x11c/0x150 el0t_64_sync+0x18c/0x190 ---[ end trace 0000000000000000 ]--- Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010eab1000 [0000000000000018] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP ... Hardware name: Google CoachZ (rev3+) (DT) pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ww_mutex_lock+0x28/0x32c lr : drm_modeset_lock_all_ctx+0x1b0/0x3d0 sp : ffff80000805bb50 x29: ffff80000805bb50 x28: ffff327c00128000 x27: 0000000000000000 x26: 00000 ---truncated---
CVE-2022-50257 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: xen/gntdev: Prevent leaking grants Prior to this commit, if a grant mapping operation failed partially, some of the entries in the map_ops array would be invalid, whereas all of the entries in the kmap_ops array would be valid. This in turn would cause the following logic in gntdev_map_grant_pages to become invalid: for (i = 0; i < map->count; i++) { if (map->map_ops[i].status == GNTST_okay) { map->unmap_ops[i].handle = map->map_ops[i].handle; if (!use_ptemod) alloced++; } if (use_ptemod) { if (map->kmap_ops[i].status == GNTST_okay) { if (map->map_ops[i].status == GNTST_okay) alloced++; map->kunmap_ops[i].handle = map->kmap_ops[i].handle; } } } ... atomic_add(alloced, &map->live_grants); Assume that use_ptemod is true (i.e., the domain mapping the granted pages is a paravirtualized domain). In the code excerpt above, note that the "alloced" variable is only incremented when both kmap_ops[i].status and map_ops[i].status are set to GNTST_okay (i.e., both mapping operations are successful). However, as also noted above, there are cases where a grant mapping operation fails partially, breaking the assumption of the code excerpt above. The aforementioned causes map->live_grants to be incorrectly set. In some cases, all of the map_ops mappings fail, but all of the kmap_ops mappings succeed, meaning that live_grants may remain zero. This in turn makes it impossible to unmap the successfully grant-mapped pages pointed to by kmap_ops, because unmap_grant_pages has the following snippet of code at its beginning: if (atomic_read(&map->live_grants) == 0) return; /* Nothing to do */ In other cases where only some of the map_ops mappings fail but all kmap_ops mappings succeed, live_grants is made positive, but when the user requests unmapping the grant-mapped pages, __unmap_grant_pages_done will then make map->live_grants negative, because the latter function does not check if all of the pages that were requested to be unmapped were actually unmapped, and the same function unconditionally subtracts "data->count" (i.e., a value that can be greater than map->live_grants) from map->live_grants. The side effects of a negative live_grants value have not been studied. The net effect of all of this is that grant references are leaked in one of the above conditions. In Qubes OS v4.1 (which uses Xen's grant mechanism extensively for X11 GUI isolation), this issue manifests itself with warning messages like the following to be printed out by the Linux kernel in the VM that had granted pages (that contain X11 GUI window data) to dom0: "g.e. 0x1234 still pending", especially after the user rapidly resizes GUI VM windows (causing some grant-mapping operations to partially or completely fail, due to the fact that the VM unshares some of the pages as part of the window resizing, making the pages impossible to grant-map from dom0). The fix for this issue involves counting all successful map_ops and kmap_ops mappings separately, and then adding the sum to live_grants. During unmapping, only the number of successfully unmapped grants is subtracted from live_grants. The code is also modified to check for negative live_grants values after the subtraction and warn the user.
CVE-2022-50254 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: media: ov8865: Fix an error handling path in ov8865_probe() The commit in Fixes also introduced some new error handling which should goto the existing error handling path. Otherwise some resources leak.
CVE-2025-13016 1 Mozilla 1 Firefox 2025-11-25 N/A 7.5 HIGH
Incorrect boundary conditions in the JavaScript: WebAssembly component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5.
CVE-2024-40614 1 Egroupware 1 Egroupware 2025-11-25 N/A 9.8 CRITICAL
EGroupware before 23.1.20240624 mishandles an ORDER BY clause. This leads to json.php?menuaction=EGroupware\Api\Etemplate\Widget\Nextmatch::ajax_get_rows sort.id SQL injection by authenticated users for Address Book or InfoLog sorting.
CVE-2022-50159 1 Linux 1 Linux Kernel 2025-11-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: of: check previous kernel's ima-kexec-buffer against memory bounds Presently ima_get_kexec_buffer() doesn't check if the previous kernel's ima-kexec-buffer lies outside the addressable memory range. This can result in a kernel panic if the new kernel is booted with 'mem=X' arg and the ima-kexec-buffer was allocated beyond that range by the previous kernel. The panic is usually of the form below: $ sudo kexec --initrd initrd vmlinux --append='mem=16G' <snip> BUG: Unable to handle kernel data access on read at 0xc000c01fff7f0000 Faulting instruction address: 0xc000000000837974 Oops: Kernel access of bad area, sig: 11 [#1] <snip> NIP [c000000000837974] ima_restore_measurement_list+0x94/0x6c0 LR [c00000000083b55c] ima_load_kexec_buffer+0xac/0x160 Call Trace: [c00000000371fa80] [c00000000083b55c] ima_load_kexec_buffer+0xac/0x160 [c00000000371fb00] [c0000000020512c4] ima_init+0x80/0x108 [c00000000371fb70] [c0000000020514dc] init_ima+0x4c/0x120 [c00000000371fbf0] [c000000000012240] do_one_initcall+0x60/0x2c0 [c00000000371fcc0] [c000000002004ad0] kernel_init_freeable+0x344/0x3ec [c00000000371fda0] [c0000000000128a4] kernel_init+0x34/0x1b0 [c00000000371fe10] [c00000000000ce64] ret_from_kernel_thread+0x5c/0x64 Instruction dump: f92100b8 f92100c0 90e10090 910100a0 4182050c 282a0017 3bc00000 40810330 7c0802a6 fb610198 7c9b2378 f80101d0 <a1240000> 2c090001 40820614 e9240010 ---[ end trace 0000000000000000 ]--- Fix this issue by checking returned PFN range of previous kernel's ima-kexec-buffer with page_is_ram() to ensure correct memory bounds.
CVE-2025-39793 1 Linux 1 Linux Kernel 2025-11-25 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: io_uring/memmap: cast nr_pages to size_t before shifting If the allocated size exceeds UINT_MAX, then it's necessary to cast the mr->nr_pages value to size_t to prevent it from overflowing. In practice this isn't much of a concern as the required memory size will have been validated upfront, and accounted to the user. And > 4GB sizes will be necessary to make the lack of a cast a problem, which greatly exceeds normal user locked_vm settings that are generally in the kb to mb range. However, if root is used, then accounting isn't done, and then it's possible to hit this issue.
CVE-2025-31201 1 Apple 5 Ipados, Iphone Os, Macos and 2 more 2025-11-25 N/A 9.8 CRITICAL
This issue was addressed by removing the vulnerable code. This issue is fixed in tvOS 18.4.1, visionOS 2.4.1, iOS iOS 18.4.1 and iPadOS 18.4.1, macOS Sequoia 15.4.1. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. Apple is aware of a report that this issue may have been exploited in an extremely sophisticated attack against specific targeted individuals on iOS.
CVE-2023-41419 1 Gevent 1 Gevent 2025-11-25 N/A 9.8 CRITICAL
An issue in Gevent before version 23.9.0 allows a remote attacker to escalate privileges via a crafted script to the WSGIServer component.
CVE-2023-53163 1 Linux 1 Linux Kernel 2025-11-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: don't hold ni_lock when calling truncate_setsize() syzbot is reporting hung task at do_user_addr_fault() [1], for there is a silent deadlock between PG_locked bit and ni_lock lock. Since filemap_update_page() calls filemap_read_folio() after calling folio_trylock() which will set PG_locked bit, ntfs_truncate() must not call truncate_setsize() which will wait for PG_locked bit to be cleared when holding ni_lock lock.
CVE-2025-38704 1 Linux 1 Linux Kernel 2025-11-24 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access In the preparation stage of CPU online, if the corresponding the rdp's->nocb_cb_kthread does not exist, will be created, there is a situation where the rdp's rcuop kthreads creation fails, and then de-offload this CPU's rdp, does not assign this CPU's rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and rdp's->rdp_gp->nocb_gp_kthread is still valid. This will cause the subsequent re-offload operation of this offline CPU, which will pass the conditional check and the kthread_unpark() will access invalid rdp's->nocb_cb_kthread pointer. This commit therefore use rdp's->nocb_gp_kthread instead of rdp_gp's->nocb_gp_kthread for safety check.
CVE-2025-38686 1 Linux 1 Linux Kernel 2025-11-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix a crash in UFFDIO_MOVE when PMD is a migration entry When UFFDIO_MOVE encounters a migration PMD entry, it proceeds with obtaining a folio and accessing it even though the entry is swp_entry_t. Add the missing check and let split_huge_pmd() handle migration entries. While at it also remove unnecessary folio check. [[email protected]: remove extra folio check, per David]