Vulnerabilities (CVE)

Filtered by CWE-120
Total 3648 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2022-39244 1 Pjsip 1 Pjsip 2025-11-04 N/A 7.5 HIGH
PJSIP is a free and open source multimedia communication library written in C. In versions of PJSIP prior to 2.13 the PJSIP parser, PJMEDIA RTP decoder, and PJMEDIA SDP parser are affeced by a buffer overflow vulnerability. Users connecting to untrusted clients are at risk. This issue has been patched and is available as commit c4d3498 in the master branch and will be included in releases 2.13 and later. Users are advised to upgrade. There are no known workarounds for this issue.
CVE-2022-31031 2 Debian, Teluu 2 Debian Linux, Pjsip 2025-11-04 6.8 MEDIUM 9.8 CRITICAL
PJSIP is a free and open source multimedia communication library written in C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In versions prior to and including 2.12.1 a stack buffer overflow vulnerability affects PJSIP users that use STUN in their applications, either by: setting a STUN server in their account/media config in PJSUA/PJSUA2 level, or directly using `pjlib-util/stun_simple` API. A patch is available in commit 450baca which should be included in the next release. There are no known workarounds for this issue.
CVE-2022-24793 2 Debian, Pjsip 2 Debian Linux, Pjsip 2025-11-04 4.3 MEDIUM 7.5 HIGH
PJSIP is a free and open source multimedia communication library written in C. A buffer overflow vulnerability in versions 2.12 and prior affects applications that use PJSIP DNS resolution. It doesn't affect PJSIP users who utilize an external resolver. This vulnerability is related to CVE-2023-27585. The difference is that this issue is in parsing the query record `parse_rr()`, while the issue in CVE-2023-27585 is in `parse_query()`. A patch is available in the `master` branch of the `pjsip/pjproject` GitHub repository. A workaround is to disable DNS resolution in PJSIP config (by setting `nameserver_count` to zero) or use an external resolver instead.
CVE-2022-24764 2 Debian, Teluu 2 Debian Linux, Pjsip 2025-11-04 5.0 MEDIUM 7.5 HIGH
PJSIP is a free and open source multimedia communication library written in C. Versions 2.12 and prior contain a stack buffer overflow vulnerability that affects PJSUA2 users or users that call the API `pjmedia_sdp_print(), pjmedia_sdp_media_print()`. Applications that do not use PJSUA2 and do not directly call `pjmedia_sdp_print()` or `pjmedia_sdp_media_print()` should not be affected. A patch is available on the `master` branch of the `pjsip/pjproject` GitHub repository. There are currently no known workarounds.
CVE-2022-24754 2 Debian, Teluu 2 Debian Linux, Pjsip 2025-11-04 7.5 HIGH 8.5 HIGH
PJSIP is a free and open source multimedia communication library written in C language. In versions prior to and including 2.12 PJSIP there is a stack-buffer overflow vulnerability which only impacts PJSIP users who accept hashed digest credentials (credentials with data_type `PJSIP_CRED_DATA_DIGEST`). This issue has been patched in the master branch of the PJSIP repository and will be included with the next release. Users unable to upgrade need to check that the hashed digest data length must be equal to `PJSIP_MD5STRLEN` before passing to PJSIP.
CVE-2021-43303 2 Debian, Teluu 2 Debian Linux, Pjsip 2025-11-04 7.5 HIGH 9.8 CRITICAL
Buffer overflow in PJSUA API when calling pjsua_call_dump. An attacker-controlled 'buffer' argument may cause a buffer overflow, since supplying an output buffer smaller than 128 characters may overflow the output buffer, regardless of the 'maxlen' argument supplied
CVE-2025-43312 1 Apple 1 Macos 2025-11-04 N/A 5.5 MEDIUM
A buffer overflow was addressed with improved bounds checking. This issue is fixed in macOS Sonoma 14.8, macOS Sequoia 15.7. An app may be able to cause unexpected system termination.
CVE-2024-50282 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read() Avoid a possible buffer overflow if size is larger than 4K. (cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434)
CVE-2024-50131 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: tracing: Consider the NULL character when validating the event length strlen() returns a string length excluding the null byte. If the string length equals to the maximum buffer length, the buffer will have no space for the NULL terminating character. This commit checks this condition and returns failure for it.
CVE-2024-47751 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: PCI: kirin: Fix buffer overflow in kirin_pcie_parse_port() Within kirin_pcie_parse_port(), the pcie->num_slots is compared to pcie->gpio_id_reset size (MAX_PCI_SLOTS) which is correct and would lead to an overflow. Thus, fix condition to pcie->num_slots + 1 >= MAX_PCI_SLOTS and move pcie->num_slots increment below the if-statement to avoid out-of-bounds array access. Found by Linux Verification Center (linuxtesting.org) with SVACE. [kwilczynski: commit log]
CVE-2024-45620 2 Opensc Project, Redhat 2 Opensc, Enterprise Linux 2025-11-03 N/A 3.9 LOW
A vulnerability was found in the pkcs15-init tool in OpenSC. An attacker could use a crafted USB Device or Smart Card, which would present the system with a specially crafted response to APDUs. When buffers are partially filled with data, initialized parts of the buffer can be incorrectly accessed.
CVE-2024-45619 2 Opensc Project, Redhat 2 Opensc, Enterprise Linux 2025-11-03 N/A 4.3 MEDIUM
A vulnerability was found in OpenSC, OpenSC tools, PKCS#11 module, minidriver, and CTK. An attacker could use a crafted USB Device or Smart Card, which would present the system with a specially crafted response to APDUs. When buffers are partially filled with data, initialized parts of the buffer can be incorrectly accessed.
CVE-2025-24266 1 Apple 1 Macos 2025-11-03 N/A 9.8 CRITICAL
A buffer overflow was addressed with improved bounds checking. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to cause unexpected system termination.
CVE-2025-24237 1 Apple 4 Ipados, Iphone Os, Macos and 1 more 2025-11-03 N/A 9.8 CRITICAL
A buffer overflow was addressed with improved bounds checking. This issue is fixed in visionOS 2.4, macOS Ventura 13.7.5, iOS 18.4 and iPadOS 18.4, iPadOS 17.7.6, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to cause unexpected system termination.
CVE-2024-44218 1 Apple 3 Ipados, Iphone Os, Macos 2025-11-03 N/A 7.8 HIGH
This issue was addressed with improved checks. This issue is fixed in iOS 17.7.1 and iPadOS 17.7.1, macOS Sonoma 14.7.1, iOS 18.1 and iPadOS 18.1. Processing a maliciously crafted file may lead to heap corruption.
CVE-2024-44144 1 Apple 5 Ipados, Iphone Os, Macos and 2 more 2025-11-03 N/A 5.5 MEDIUM
A buffer overflow was addressed with improved size validation. This issue is fixed in iOS 17.7.1 and iPadOS 17.7.1, macOS Sequoia 15, macOS Sonoma 14.7.1, tvOS 18, watchOS 11, visionOS 2, iOS 18 and iPadOS 18. Processing a maliciously crafted file may lead to unexpected app termination.
CVE-2024-42238 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Return error if block header overflows file Return an error from cs_dsp_power_up() if a block header is longer than the amount of data left in the file. The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop while there was enough data left in the file for a valid region. This protected against overrunning the end of the file data, but it didn't abort the file processing with an error.
CVE-2024-41039 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix overflow checking of wmfw header Fix the checking that firmware file buffer is large enough for the wmfw header, to prevent overrunning the buffer. The original code tested that the firmware data buffer contained enough bytes for the sums of the size of the structs wmfw_header + wmfw_adsp1_sizes + wmfw_footer But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and Halo Core the equivalent struct is wmfw_adsp2_sizes, which is 4 bytes longer. So the length check didn't guarantee that there are enough bytes in the firmware buffer for a header with wmfw_adsp2_sizes. This patch splits the length check into three separate parts. Each of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked separately before they are used.
CVE-2024-41038 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Prevent buffer overrun when processing V2 alg headers Check that all fields of a V2 algorithm header fit into the available firmware data buffer. The wmfw V2 format introduced variable-length strings in the algorithm block header. This means the overall header length is variable, and the position of most fields varies depending on the length of the string fields. Each field must be checked to ensure that it does not overflow the firmware data buffer. As this ia bugfix patch, the fixes avoid making any significant change to the existing code. This makes it easier to review and less likely to introduce new bugs.
CVE-2024-40902 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: jfs: xattr: fix buffer overflow for invalid xattr When an xattr size is not what is expected, it is printed out to the kernel log in hex format as a form of debugging. But when that xattr size is bigger than the expected size, printing it out can cause an access off the end of the buffer. Fix this all up by properly restricting the size of the debug hex dump in the kernel log.